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Tree codes - definition

dist(u, v) =
2

3

dist(T ) = inf
u,v with
equal depth

{dist(u, v)}
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Leonard Schulman (STOC 1993)



Tree codes - examples

dist(T ) = 0
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Tree codes - examples

dist(T ) = 1
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{0, 1}n, where n is the depth of the edge.



Tree codes - properties

Number of colors, |Σ| (smaller is better, hopefully constant).

Distance, δ ∈ (0, 1] (larger is better).

Is it explicit?
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Tree codes - what are they good for?

Consider the case in which Alice wishes to send Bob a message
x ∈ {0, 1}n over an imperfect channel.

We know that Alice can apply an ECC to her message to get
C(x) ∈ {0, 1}αn, for a constant α, so Bob can recover a corrupted
message, even if a constant fraction of errors were occurred.
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Tree codes - what are they good for?

But what happens if instead of one sending the other a single message,
Alice and Bob wish to have a conversation?

In this case, the fraction of errors may occur is constant in the length of
the whole conversation.

Applying a standard ECC won’t suffice (why?). Example - playing chess.
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Tree codes - what are they good for?

It is not at all clear that one can “pay” a constant factor in the length of
the conversation, to enable Alice and Bob talk despite the errors.

Tree codes have an analog role to standard ECCs for the case of
interactive communication - Schulman (STOC 1993) proved that the
existence of tree codes implies resilient interactive schemes.
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Asymptotically good tree codes exist!

Theorem (Schulman (STOC 1993))

For any δ ∈ (0, 1) there exists a binary tree code with alphabet size
|Σ| = Oδ(1) and distance δ.

Theorems (Cohen–Samocha (CCC 2020))

4 colors suffice and are necessary for constructing an asymptotically good
tree code.
More specifically - there exists a 4-color tree code with distance 0.136.

Were proved by the probabilistic method...

Providing an explicit construction of an asymptotically good binary tree
code is still an open problem!
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Tree codes - deterministic explicit constructions
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Authors
Number of colors

at depth n
Distance

Trivial 2n 1

Evans–Klugerman–Schulman (1994) nOδ(1) δ

Gelles–Haeupler–Kol–
Ron-Zewi–Wigderson (SODA 2016)

O(1) Ω
(

1
logn

)
*

Cohen–Haeupler–Schulman (STOC 2018) (log n)Oδ(1) δ

Moore–Schulman (ITCS 2014) O(1) Ω(1)

BY–Cohen–Narayanan (RANDOM 2021) Oδ(1) δ

The holy grail O(1) Ω(1)

* Namely, every pair of vertices at depth n have distance Ω
(

1
logn

)
.

Narayanan–Weidner (SIAM 2020) provided a construction achieving
the same parameters as CHS. They also provided a randomized

decoding algorithm when the correction radius is Ω
(
n−1/4 log−1/2 n

)
.



Tree codes - deterministic explicit constructions
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Authors
Number of colors

at depth n
Distance

Trivial 2n 1

Evans–Klugerman–Schulman (1994) nOδ(1) δ

Gelles–Haeupler–Kol–
Ron-Zewi–Wigderson (SODA 2016)

O(1) Ω
(

1
logn

)
*

Cohen–Haeupler–Schulman (STOC 2018) (log n)Oδ(1) δ

Moore–Schulman (ITCS 2014) O(1) Ω(1)

BY–Cohen–Narayanan (RANDOM 2021) Oδ(1) δ

The holy grail O(1) Ω(1)

Other works: Braverman (ITCS 2012), Pudlák (Linear Algebra Appl.
2015), Brakerski–Kalai–Saxena (FOCS 2020), Bhandari–Harsha
(CoRR 2020) and many more.



Our main results

Theorem (BY–Cohen–Yankovitz (2021))

For every δ ∈
(
0, 1

10

)
, there exists an explicit binary tree code with

(log n)O(
√
δ) colors and distance δ.

To be compared with the CHS’s construction, which requires ω(log n)
colors for any constant distance δ.

Corollary

There exists an explicit binary tree code with a constant number of colors

and distance Ω
(

1
(log logn)2

)
.

To be compared with the GHK+’s binary tree code that has a constant

number of colors and distance Ω
(

1
logn

)
.
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Tree Codes - another (equivalent) definition
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Definition (Split)

For two strings x ̸= y ∈ {0, 1}N we set split(x,y) to be the minimal index
i for which xi ̸= yi.



Tree Codes - another (equivalent) definition
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Definition (Online function)

A function f : {0, 1}N → ΣN is online if for every x ∈ {0, 1}N and i ∈ N,
f(x)i is determined by x0, . . . , xi.



Tree Codes - another (equivalent) definition
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Definition (Tree code)

An online function TC : {0, 1}N → ΣN is a tree code with distance δ if for
every x ̸= y ∈ {0, 1}N such that s = split(x,y) and every ℓ ∈ N,

dist
(
TC(x)[s,s+ℓ],TC(y)[s,s+ℓ]

)
≥ δ.



Infinite Tree code
?⇐⇒ infinite family of finite tree codes

A natural relaxation is considering a tree code of finite depth, namely, a
tree code of the form

TC : {0, 1}n → Σn, n ∈ N.

It is clear that an infinite tree code implies finite tree codes of any finite
depth - just truncate the infinite tree code at any desired depth.

Does the converse also hold? Namely, does an infinite family of finite tree
codes (TCn)n∈N, such that TCn has depth n, all have |Σ| colors and
distance δ, implies an infinite tree code (with comparable parameters)?

Apparently, the answer is yes!
We proved that an infinite family of finite tree codes (TCn)n∈N with
distance δ and |Σ| colors, implies an infinite tree code with distance δ

2 and
|Σ|3 colors.

In fact, it suffices to have a tree code of depth 2n for every n ∈ N.

I. Ben Yaacov, G. Cohen, T. Yankovitz (TAU) Explicit Binary Tree Codes with Sub-Logarithmic Size Alphabet 19 / 46



The CHS construction

Non-binary tree code (a larger arity).

For every m, ℓ ∈ N, they constructed a (non-binary) tree code

TCm,ℓ : ({0, 1}m)ℓ →
(
{0, 1}2m+ℓ

)ℓ

with distance 1
2 .

By setting m = 1 we get a binary tree code, but then the number of
colors is exponential in the depth of the tree (as in the trivial
solution!).

For comparison, the construction of Evans–Klugerman–Schulman
(1994) can be used to construct a tree code with {0, 1}m log ℓ colors.

A key property: in the CHS’s construction, m and ℓ have an additive
relation!
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CHS - reducing the alphabet binary

Set m = ℓ =
√
n and consider

TC√
n :

(
{0, 1}

√
n
)√

n
→

(
{0, 1}3

√
n
)√

n
.

Given a binary string x ∈ {0, 1}n, divide it to
√
n blocks, each

consists of
√
n bits.
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CHS - reducing the alphabet to binary, cont.

A reminder: we have TC√
n :

(
{0, 1}

√
n
)√n

→
(
{0, 1}3

√
n
)√n
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TC√n

( )

TC4√n

( )
TC4√n

( )
TC4√n

( )
TC4√n

( )

...
...until we reach a constant block-length.



CHS - reducing the alphabet to binary, cont.

A reminder: we have TC√
n :

(
{0, 1}

√
n
)√n

→
(
{0, 1}3

√
n
)√n
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...

TC√n

( )

We simultaneously output the strings that were generated in all levels.
Since the depth of the recursion is log log n, and for each step we write
3 bits, the alphabet size is

23 log logn = (log n)3.
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Our strategy

Strategy: reduce the dependence of the number of colors on the depth of
the tree until it is entirely eliminated.

Given a tree code

TC : ({0, 1}m)ℓ →
(
{0, 1}k

)ℓ
,

with distance δ, break the number of colors to 3 components
k = (1 + α)m+ βℓγ .
We say that TC is an (α, β, γ, δ) tree code.

Devise an efficient transformation that reduces the dependence on γ,
while not deteriorating α and β too much, and further, not harming
the distance δ (at all!).

Apply the transformation iteratively.
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Our transformation

Theorem (The γ reduction transformation)

There exists an efficient transformation that given an (α, β, γ, δ) tree code

TCin : ({0, 1}m)ℓ →
(
{0, 1}(1+α)m+βℓγ

)ℓ
,

it transforms it to an
(
α+

√
δ, β +

√
δ, γ2 , δ

)
tree code

TCout : ({0, 1}m)ℓ
2

→
(
{0, 1}(1+α+

√
δ)m+(β+

√
δ)ℓ

γ
2
)ℓ2
.

* The transformation requires m ≥ log ℓ. Thus, we take m = log ℓ, and to
reduce the alphabet to binary, we use a well-known and efficient
transformation that has almost no cost in parameters and requires
m = O(log ℓ).
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Applying the transformation iteratively

Reminders: Breaking the number of colors to components: k = (1 + α)m+ βℓγ ,

Reminders: The transformation: (α, β, γ, δ) 7−→
(
α+

√
δ, β +

√
δ, γ

2
, δ
)
.

In our notations,

TCm,ℓ : ({0, 1}m)ℓ →
(
{0, 1}2m+ℓ

)ℓ

is a
(
1, 1, 1, 12

)
tree code.

By a simple observation, we deduced a variation, TCδ
m,ℓ, that is a

(δ, δ, 1, δ) tree code.

Set TCin = TCδ
m,ℓ. Applying the transformation yields a(

δ +
√
δ, δ +

√
δ, 12 , δ

)
tree code.

Feeding the resulted tree code to the transformation yields a(
δ + 2

√
δ, δ + 2

√
δ, 14 , δ

)
tree code.
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Applying the transformation iteratively, cont.

Reminders: Breaking the number of colors to components: k = (1 + α)m+ βℓγ ,

Reminders: The transformation: (α, β, γ, δ) 7−→
(
α+

√
δ, β +

√
δ, γ

2
, δ
)
.

Doing this process iteratively for r times, yield an
(
r
√
δ, r

√
δ, 1

2r , δ
)

tree code.

By setting r ≈ log log ℓ, we eliminated the dependence on the depth
and obtained a distance-δ tree code

TCres : ({0, 1}m)ℓ →
(
{0, 1}O(

√
δ log log ℓ)m

)ℓ
.

=⇒ TCbin : {0, 1}ℓ →
(
{0, 1}O(

√
δ log log ℓ)

)ℓ
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Our binary tree codes

Summary:

TCδ
m,ℓ is explicit, our transformation is efficient, we apply it log log ℓ

times, the reduction to binary alphabet is efficient, and =⇒ TCbin is
explicit.

TCδ
m,ℓ has (a constant) distance δ > 0 and our transformation

preserves it =⇒ TCbin has distance Ω(δ) > 0.

TCbin has

2O(
√
δ log log ℓ) = (log ℓ)O(

√
δ)

colors.
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Diving into our transformation

A reminder: we want to transform a distance-δ tree code

TCin : ({0, 1}m)ℓ →
(
{0, 1}(1+α)m+βℓγ

)ℓ

to

TCout : ({0, 1}m)ℓ
2

→
(
{0, 1}(1+α+

√
δ)m+(β+

√
δ)ℓ

γ
2
)ℓ2

.

without deteriorating the distance.
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Diving into the transformation, cont.

Given a message x = (x1, x2, . . . , xℓ2) ∈ ({0, 1}m)ℓ
2

, write it in an
ℓ× ℓ matrix.

Apply TCin : ({0, 1}m)ℓ →
(
{0, 1}(1+α)m+βℓγ

)ℓ
to each rows.

Apply the variation on the CHS construction

TCmat ≜ TC
√
δ

mℓ,ℓ :
(
{0, 1}mℓ

)ℓ
→

(
{0, 1}(1+

√
δ)m+

√
δℓ
)ℓ

to the entire matrix, and apply an ECC with distance
√
δ on each of

its output symbols. (Why not tensoring?)
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x1 x2 . . . xℓ
xℓ+1 xℓ+2 . . . x2ℓ
...

...
. . .

...

x(ℓ−1)ℓ+1 x(ℓ−1)ℓ+2 . . . xℓ2

TCin

( )
TCin

( )
TCin

( )

TCmat



Distance analysis

Distance analysis:

If the entire “test” is contained in a single row, TCin guarantees
distance δ.

If the entire “test” contains full rows, TCmat guarantees distance
√
δ

(and together with the ECC, distance δ).

What if we have neither?
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x1 x2 . . . xℓ
xℓ+1 xℓ+2 . . . x2ℓ
...

...
. . .

...

x(ℓ−1)ℓ+1 x(ℓ−1)ℓ+2 . . . xℓ2

TCin

( )
TCin

( )
TCin

( )

TCmat



An example

In this example, x = . . . 00ε00 . . . and ε is located at the end of the row.

TCin

(
x(2)

)
gives a vanishing distance of 1

ℓ , and TCin

(
x(3)

)
guarantees no distance.

Further, since the test doesn’t include a full row, we don’t have any
fully written output symbol of TCmat after the split.

We need a solution that provides more distance as the split gets
closer to the end of the row.
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εTCin

( )
TCin

( )



Distance analysis, cont.

A partial solution: a “reverse” polynomial.

For each row i ∈ [ℓ], we define a polynomial that read its coefficients from
the previous row. More formally:

gi(T ) =

ℓ∑
j=1

xi−1,jT
ℓ−j ∈ F2m [T ].

Note that it reads the coefficients “backwards” - from right to left.

Then, we evaluate gi over distinct (but fixed) field elements, and write the
evaluations in the respective row.
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←−coefficients
evaluations−→



An example

In this example,
g3(T ) = σT + ε.

Note that if there are not many cells in the upper row, g3 is a small degree
polynomial (with degree = s− 1). Hence, it has few roots in the
consecutive row to the split.
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σ ε



Another example

But what is all the roots of gi are happened to be at the beginning of the
consecutive row, and the test doesn’t include enough cells?

In this case, we must rely on TCin, but then the distance will deteriorate...

I. Ben Yaacov, G. Cohen, T. Yankovitz (TAU) Explicit Binary Tree Codes with Sub-Logarithmic Size Alphabet 37 / 46

σ ε



Distance analysis, cont.

The solution: suffix distance.

We equip TCin with another distance property that provides it a larger
distance only if we read the end of the message. More formally:

Definition (Suffix distance)

A tree code TC : Σℓ → Πℓ has suffix distance ∆ if for every x ̸= y ∈ Σℓ

with s = split(x,y), dist
(
TC(x)[s,ℓ] ,TC(y)[s,ℓ]

)
≥ ∆.

We (efficiently) transform TCin to an (α+∆, β, γ, δ) tree code with suffix
distance ∆, TC∆

in .
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x1 x2 . . . xℓ
xℓ+1 xℓ+2 . . . x2ℓ
...

...
. . .

...

x(ℓ−1)ℓ+1 x(ℓ−1)ℓ+2 . . . xℓ2

TC∆
in

( )
TC∆

in

( )
TC∆

in

( )

TC
√
δ

mℓ,ℓ



Distance analysis, cont.

Thus, to have distance δ, at time (i, j) ∈ [ℓ]× [ℓ] we output

TC∆
in

(
x(i)

)
j
, that handles single row tests and two-row tests, where

the split is at the beginning of the row.

TCmat(x)i−1, that handles multiple rows tests.

gi, that handles two-row tests, where the split is at the end of the row.

The resulted distance is the minimum over the distance each of above
guarantees (recall that we apply an ECC with to the output symbols of
TCmat).
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x1 x2 . . . xℓ
xℓ+1 xℓ+2 . . . x2ℓ
...

...
. . .

...

x(ℓ−1)ℓ+1 x(ℓ−1)ℓ+2 . . . xℓ2



Analyzing the number of colors

A problem: What happens if we output both the outputs of TC∆
in and

TCmat?

Recall that each tree code outputs at least one bit per every bit read.

Thus, In the least worst case, applying the transformation to the
CHS’s (δ, δ, 1, δ) tree code, would yield an(

δ + 1, δ +
√
δ,

1

2
, δ

)
tree code.

After r iterations, we will get an
(
δ + r, δ + r

√
δ, 1

2r , δ
)
tree code.

Thus, the resulted binary tree code will be of the form

TCbin : {0, 1}ℓ →
(
{0, 1}O(log log ℓ)

)ℓ
,

resulting in at least ω(log ℓ) colors.
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analyzing the number of colors, cont.

Remarks:

This is also the reason we couldn’t afford using the
(
1, 1, 1, 12

)
CHS

construction, but had to relax it to a (δ, δ, 1, δ) tree code.

This restriction also prevented us from using a standard “shifting”
solution for dealing with the case of a test that includes 2 non-full
rows.
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Analyzing the number of colors, cont.

Solution: systematic encodings.

Informally, we say that an encoding is systematic if its input appears in the
output. For example, f(x) = (x, y).

Since the CHS construction is systematic, and both TC∆
in and TCmat are

applied to the original input, we can output the systematic part only once,
and output only the redundant parts of TC∆

in , TCmat and the ECC applied
to it, while making sure that all of the above are not too “pricey”.
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Analyzing the number of colors, cont.

A problem: What happens if we output an evaluation of gi for each cell?

Since we need ℓ distinct elements, we work over a filed of size ≥ ℓ = 2m.
Thus we need at least m bits for writing an evaluation. This results in the
exact same problem as in the previous case.

Solution: we output a symbol only once per c symbols read, and “spread”
it over c output symbols. Here again we need to use a block ECC, hence
we set c ≈ 1√

δ
and used an ECC with distance

√
δ.
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Conclusion

With these solutions in hand, the number of colors required for the
resulted tree code is

2(1+α+
√
δ)m+(β+

√
δ)ℓ

γ
2 ,

and by applying the transformation iteratively, where the initial input is the
(δ, δ, 1, δ) CHS’s construction, we get the desired result.
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Open questions

The holy grail - devise a construction with a constant distance and a
constant number of colors.

Breaking the log ℓ barrier for a high constant distance, say δ = 0.9
with

√
log ℓ colors.

Is there a better transformation that can reduce the number of colors
used by CHS even further?

Devise a construction with constant distance and poly(log log ℓ)
colors.

I. Ben Yaacov, G. Cohen, T. Yankovitz (TAU) Explicit Binary Tree Codes with Sub-Logarithmic Size Alphabet 45 / 46



Thank you for listening!
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